
ISSN (Online) : 2278-1021 
 ISSN (Print)    : 2319-5940 

  International Journal of Advanced Research in Computer and Communication Engineering 
  Vol. 3, Issue 9, September 2014 
 

Copyright to IJARCCE                              www.ijarcce.com          8017 

 

High Performance E-Business using Application 

Level Caching 
 

Shaina
1
, Mrs.Anshu Kamboj

2
 

Student, CSE, JCDMCOE, Sirsa, India1 

Assistant Professor, CSE, JCDMCOE, Sirsa, India2 

 

Abstract:  E-commerce applications face many  challenges  in  cost  and  manageability, especially  for  database  

servers  that  are  deployed  as  those application’s  backends  in  a multi-tier  configuration.  One solution is middle-

Tier Database. For E-Commerce websites there are mainly two issues, cost and time. As the numbers of users increase, 

performance related issues needs to be solved by using caching concepts. In E-Commerce websites dynamic pages are 

used to provide wider range of interaction than static HTML pages. At the same time, much performance related issues 

arises by using dynamic page generation technologies because of load placed on server-side resources. For many web 

applications system support for caching is insufficient. This Paper provides a new way of Application level caching to 

improve performance of web applications. Concept of shared and unshared caching has been used in proposed method. 

 

Keywords: Caching, Proxy, Shared, Unshared, Application. 

 

I. INTRODUCTION 

In today Scenario regarding performance, there are various 

techniques of caching which have been used for deploy in 

E-Service like E-Business to increase the performance 

web-based applications in for increase the performance of 

multi tier architecture services on the Internet. These 

applications are critical application with regards of 

accessibility such that the information should be right with 

us on right time. High performance implies cost of servers 

according to the type if application which are running on 

servers. This type of applications achieve a measure of 
scalability with application servers running on multiple 

systems connecting to a single database system. For 

solving the issue of performance, sever side issues can be 

resolved using caching. 
 

The business related web services are often critical part of 

infrastructure which is needed for the success of 
organization in terms of processing time. The application 

performance benefits can be achieved by the query 

calculation. The cached objects are often stored in hash 

table and balanced tree and indexing which can be byte 

stream, numerical value or by the Strings.  The application 

level cache has been designed with API which allows the 

developer to manage the cache contents explicitly. There 

are all features likely to the database which can be update 

or Modify, Add and Delete. The developers can easily 

work with the cache by taking the knowledge of 

application specific Structure when caching of data. There 
are different approaches for caching which can be 

Unshared and Shared. 

 

Application Caching can be done either on the client side, 

in between the client and the server, or on the server side 

(data caching/page output caching). So we can classify 

caching locations like this: 

1. Client Caching 

2. Proxy Caching 

3. Reverse Proxy Caching 

4. Web Server Caching 

 

 

In web server caching, cached data is stored inside the web 

server. Data caching and page caching uses the web server 

caching mechanism. It will increase performance of 

website. We will work on web server caching as shown in 

Fig. 1 

 
Fig 1 Application Level Cache 

 

II. LITERATURE REVIEW 
The author has introduced client-side data-caching scheme 

for relational databases with a central server and multiple 

clients. Based on queries executed on the central database 

at the server data is loaded into each client cache. 

Predicates that describe the cache contents are formed 

using these queries. A subsequent query at the client may 

be fulfilled in its local cache if we can find out that the 

query result is entirely contained in the cache. This matter 



ISSN (Online) : 2278-1021 
 ISSN (Print)    : 2319-5940 

  International Journal of Advanced Research in Computer and Communication Engineering 
  Vol. 3, Issue 9, September 2014 
 

Copyright to IJARCCE                              www.ijarcce.com          8018 

 

is called cache completeness. A separate matter, cache 

currency, deals with the effect on client caches of updates 

committed at the central database. Various performance 
tradeoffs and optimization issues involved in addressing 

the questions of cache currency and completeness are 

examined by us using predicate descriptions and suggest 

solutions that promote good dynamic behaviour. Lower 

query-response times, less message traffic, superior server 

throughput, and better scalability are some of the expected 

benefits of our approach over commonly used relational 

server-side and object ID-based or page-based client-side 

caching [1]. 

 

A semantic model has been proposed for client-side 
caching and replacement in a client-server database system 

and this approach is compared to page caching and tuple 

caching strategies. Our caching model is based on, and its 

advantages are derived from, three key ideas. Usage 

information for replacement policies is maintained in an 

adaptive fashion for semantic regions, which are related 

with collections of tuples [4].  

 

A transactional data cache consistency maintenance 

algorithm is required to make ensure that such caching 

does not result in the violation of transaction semantics. So 

many algorithms have been proposed in the literature and, 
as all provide the same functionality, primary concern is 

performance in choosing among them. In this article we a 

taxonomy is presented by us that describes the design 

space for transactional cache consistency maintenance 

algorithms and show how proposed algorithms relate to 

one another. Then performance of six of these algorithms 

is investigated by us, and these results are used to examine 

the tradeoffs inherent in the design choices identified in 

the taxonomy. It is shown by the results that the 

interactions among dimensions of the design space can 

impact performance in many ways, and that classification 
of algorithms as simply “pessimistic” or “optimistic” do 

not exactly characterize the similarities and differences 

among the many possible cache consistency algorithms [5] 

For scalable web content delivery at web intermediaries 

cache consistency is required. The Web Content 

Distribution protocol (WCDP) has been introduced, which 

is an invalidation and update protocol to provide cache 

consistency for a large number of often changing web 

objects. WCDP supports different levels of consistency: 

strong, delta, weak, and explicit. It supports atomic 

invalidates and mutual consistency among objects and 
handles multiple deployment architectures. By grouping 

objects and messages together and by using a hierarchical 

organization for message delivery, scalability is achieved 

by WCDP. WCDP operates between the origin server, 

mirror sites, and the participating web intermediaries. It is 

not, however, targeted for inter-CDN operations [11]. 

 

III. OBJECTIVES 

For  middle-tier  database  caching, using  a  general-

purpose  industrial-strength  DBMS    is  especially  

attractive  to  e- Businesses. This is mainly due to crucial 

business requirements such as reliability, scalability and 
manageability. For instance, an industrial-strength DBMS, 

provides a  variety  of  tools  for  application  development 

and closely  tracks SQL enhancements.   More 

importantly, transactional support, multiple consistency 
levels, and efficient recovery services is provided by it.    

Finally,  an ideal  cache  should  be  transparent  to  the  

application  that  uses  it, and with a special-purpose 

solution it is very difficult to achieve. 

 

Existing Problems: 

1. High Response time in E-Commerce websites due to 

High number of request/ Load. 
 

2. Fetch same data from database for every User. 
 

3. Repeat processing for same kind of search. 
 

4. Multiple query execution at same time decrease site 

performance. 
 

5. Shared caching architecture having problem of higher 

latency for accessing a cached object because of inter-

process communication. 
 

6. Unshared caching is required extra space for storing 

all n copies. Maintain Consistency is also required. 

 

Objectives: 

1. Remove disadvantages of Shared and Unshared 

architecture of caching. 
 

2. Design a new Architecture, Hybrid architecture by 

combining both caching architectures. 
 

3. Design an Algorithm which will handle problem of 

same data fetching process by maintaining search 

keywords and counts. 
 

4. Remove caching Memory to store new Data. 
 

IV. PROPOSED METHODOLOGY 

While using a full-fledged database engine for middle-tier 

database caching much research question arises.  

 

The answers to some of them affect the relevance of 

others. In decreasing order of importance, these are.   
 

1. What  are  the  performance  issues  in  e-Business  

applications,  or  in  other words,  and does the right 

problems are addressed by us focusing on database 

caching?    
 

2. Will  performance  be  acceptable  using  a  

commercial DBMS  as  a middle-tier  data  cache?    

Features such as transactional semantics, consistency, 

and recovery come with some operating cost. What 

features can be dispensed with in such an situation?  
 

3. What database caching schemes are suitable for e-

Commerce applications?   
 

4. How can a database caching scheme be implemented 

in a business database engine and how does it perform 

under practical e-Commerce workloads?  
 

5. What is the consequence of running a database server 

in the same computer as an application server?   
 

6. How these results can be generalized to other kinds of 

web applications?   



ISSN (Online) : 2278-1021 
 ISSN (Print)    : 2319-5940 

  International Journal of Advanced Research in Computer and Communication Engineering 
  Vol. 3, Issue 9, September 2014 
 

Copyright to IJARCCE                              www.ijarcce.com          8019 

 

Work Flow of proposed Method: 

 
Fig 2 Work Flow 

 

V. CONCLUSION AND FUTURE WORK 

 We have examined the opportunities in e-Commerce 

applications for middle-tier database caching. We have 

categorized the events and use hybrid approach of Caching 

by combining shared and unshared caching according to 

nature of event. We have measured Page Load Time for 

data returned from Database and cache and compared 

them. 

 

It’s clear from results that caching is effective for large 

number of user requests and same kind of searching. Site 
performance can be increased using this caching scheme. 

A web application has been designed in Asp.net with 

caching management algorithm. Results are measured by 

running it in local system. This site can be deployed on 

server. Log files will be generated in home directory by 

name: “Home.txt” and “Search.txt”. 

 

Future work  includes  extending  the Caching Scheme and 

Algorithm to handle  special  SQL  data  types,  

statements,  and  user  defined functions. Investigating of 

alternatives for handling frequent database updates. 
Usability  enhancements,  such  as  cache  performance 

monitoring,  and  dynamic  identification  of  candidate  

tables  for caching are important directions for us to 

pursue. 

 

REFERNCES 
[1] Arthur M. Keller and Julie Basu, 1995, A predicate-based caching 

scheme for client-server database architectures 

[2] Sibel Adali, K. Selçuk Candan, Yannis Papakonstantinou, and V. S. 

Subrahmanian.  Query Caching and Optimization in Distributed 

Mediator Systems.  Proc. ACM SIGMOD International Conference 

on Management of Data, Montreal, Quebec, Canada, June 1996. 

[3] Abdelsalam Heddaya, 1996, WebWave: Globally Load Balanced 

Fully Distributed Caching of Hot Published Documents. 

[4] Shaul Dar, 1996, Semantic Data Caching and Replacement 

[5] Michael j. Franklin, Transactional Client-Server Cache 

Consistency: Alternatives and Performance, ACM Transactions on 

Database Systems, Vol. 22, No. 3, September 1997. 

[6] Jim Challenger, Arun Iyengar, and Paul Dantzig. A Scalable  

System for Consistently Caching Dynamic Web Data.  IEEE  

INFOCOM 1999. 

[7] Boris Chidlovskii, Claudia Roncancio, and Marie-Luise Schneider.  

Cache Mechanism for Heterogeneous Web Querying.  Proc. 8th 

World Wide Web Conferences  (WWW8), Toronto, Canada, 1999.   

[8] Jim Challenger, Arun Iyengar, and Paul Dantzig,1999, A Scalable 

System for Consistently Caching Dynamic Web Data. 

[9] Yeol Song, 2000, “Database Design for Real-World E-Commerce 

Systems”, IEEE 

[10] K. Johnson, J. Carr, M. Day, and M. Kaashoek. 2000, The 

measured performance of content distribution networks. In 5th Int. 

Web Caching and Content Delivery Workshop, Lisbon, Portugal. 

[11] B. Krishnamurthy and C. Wills.2000, Analyzing factors that in ence 

end-to-end web performance. In International World Wide Web 

Conference. 

[12] A. Labrinidis and N. Roussopoulos.2000, WebView 

Materialization. In ACM SIGMO. 

 

 

 


